

M.C. Wilder, D.C. Reda, D.W. Bogdanoff* and J. Olejniczak NASA-Ames Research Center, Moffett Field, CA *ELORET Corporation, Sunnyvale, CA

> 2nd International Planetary Probe Workshop August 23-26, 2004 NASA Ames, Moffett Field, CA

Introduction

Reacting Flow Environments Branch

Space Technology Division

- Flight data needed to validate and verify aerothermodynamic design methods
- Not always possible to instrument actual entry vehicles, and dedicated flight experiments are expensive
- Consequently, design methods must be validated against experiments in ground-test facilities
 - Wind tunnels, arcjets, shock tubes/tunnels, ballistic ranges
- No single facility type can reproduce all parameters of full-scale hypersonic atmospheric-entry flight
 - Different facility types complement each other by providing validation data over largest possible parameter space
 - Available flight data helps verify traceability between ground-test and flight conditions

Ballistic-Range Testing

Reacting Flow Environments Branch

Space Technology Division

- Ballistic-range uniquely provides opportunity for small-scale flight test
- Hypersonic flight through a quiescent, well characterized atmosphere
- Correct flight enthalpy and Mach number
- Real-gas effects with uncontaminated chemistry
- Broad operational envelope
 - Flight velocity and effective altitude (freestream pressure) are independently variable
 - V_{∞} up to 9 km/s (h_{stag} ≈ 40 MJ/kg)
 - P_{∞} from 0.005 atm to 1.0 atm
 - Selectable test atmosphere:
 Air, CO₂, N₂, He, Ar, Kr, Xe, etc.

Flight Domain Simulation Capability

NASA-Ames Hypervelocity Free-Flight Facility

Reacting Flow Environments Branch

Space Technology Division

0.5

-0.5

Representative Results

Reacting Flow Environments Branch Space Technology Division 70° Sphere-Cone 70° Sphere-Cone $V = 3.7 \text{ km/s} (V_L = 4.5 \text{ km/s})$ $V = 3.8 \text{ km/s} (V_1 = 4.5 \text{ km/s})$ Flight Time = 7.89 ms Flight Time = 7.74 ms q (kW/cm²) $P_m = 0.658 \text{ atm } (500 \text{ mmHg})$ $P_{m} = 0.75 \text{ atm } (570 \text{ mmHg})$ 32 Laminar 1.0 1.0 Zone 31 0.5 0.5 30 29 Å, 0.0 0.0 28 **Transition** -0.5 -0.5 27 Front 26 -1.0 -1.0 25 Turbulent -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 (preliminary) x/R_N x/R_N Zone 0 0.5

0

-0.5